Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>About the Editor</td>
<td>vii</td>
</tr>
<tr>
<td>About the Authors</td>
<td>ix</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xv</td>
</tr>
<tr>
<td>Chapter 1 Overview of Steelmaking Processes and Their Development</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Historical Development of Modern Steelmaking</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Bottom-Blown Acid or Bessemer Process</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Basic Bessemer or Thomas Process</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 Open Hearth Process</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4 Oxygen Steelmaking</td>
<td>7</td>
</tr>
<tr>
<td>1.2.5 Electric Furnace Steelmaking</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Evolution in Steelmaking by Process</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Structure of This Volume</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 2 Fundamentals of Iron and Steelmaking</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Thermodynamics</td>
<td>13</td>
</tr>
<tr>
<td>2.1.1 Ideal Gas</td>
<td>13</td>
</tr>
<tr>
<td>2.1.2 Thermodynamic Laws</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3 Thermodynamic Activity</td>
<td>18</td>
</tr>
<tr>
<td>2.1.4 Reaction Equilibrium Constant</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Rate Phenomena</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1 Diffusion</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2 Mass Transfer</td>
<td>26</td>
</tr>
<tr>
<td>2.2.3 Chemical Kinetics</td>
<td>39</td>
</tr>
<tr>
<td>2.2.4 Mixed Control</td>
<td>47</td>
</tr>
<tr>
<td>2.3 Properties of Gases</td>
<td>49</td>
</tr>
<tr>
<td>2.3.1 Thermochemical Properties</td>
<td>49</td>
</tr>
</tbody>
</table>

Copyright © 1998, The AISE Steel Foundation, Pittsburgh, PA. All rights reserved. xvii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2 Transport Properties</td>
<td>55</td>
</tr>
<tr>
<td>2.3.3 Pore Diffusion</td>
<td>57</td>
</tr>
<tr>
<td>2.4 Properties of Molten Steel</td>
<td>60</td>
</tr>
<tr>
<td>2.4.1 Selected Thermodynamic Data</td>
<td>60</td>
</tr>
<tr>
<td>2.4.2 Solubility of Gases in Liquid Iron</td>
<td>61</td>
</tr>
<tr>
<td>2.4.3 Iron-Carbon Alloys</td>
<td>64</td>
</tr>
<tr>
<td>2.4.4 Liquidus Temperatures of Low Alloy Steels</td>
<td>69</td>
</tr>
<tr>
<td>2.4.5 Solubility of Iron Oxide in Liquid Iron</td>
<td>69</td>
</tr>
<tr>
<td>2.4.6 Elements of Low Solubility in Liquid Iron</td>
<td>70</td>
</tr>
<tr>
<td>2.4.7 Surface Tension</td>
<td>72</td>
</tr>
<tr>
<td>2.4.8 Density</td>
<td>75</td>
</tr>
<tr>
<td>2.4.9 Viscosity</td>
<td>75</td>
</tr>
<tr>
<td>2.4.10 Diffusivity, Electrical and Thermal Conductivity, and Thermal Diffusivity</td>
<td>76</td>
</tr>
<tr>
<td>2.4.11 Free Diffusivity</td>
<td>77</td>
</tr>
<tr>
<td>2.5 Properties of Molten Slags</td>
<td>79</td>
</tr>
<tr>
<td>2.5.1 Structural Aspects</td>
<td>79</td>
</tr>
<tr>
<td>2.5.2 Slag Basicity</td>
<td>80</td>
</tr>
<tr>
<td>2.5.3 Iron Oxide in Slags</td>
<td>81</td>
</tr>
<tr>
<td>2.5.4 Selected Ternary and Quaternary Oxide Systems</td>
<td>81</td>
</tr>
<tr>
<td>2.5.5 Oxide Activities in Slags</td>
<td>84</td>
</tr>
<tr>
<td>2.5.6 Gas Solubility in Slags</td>
<td>89</td>
</tr>
<tr>
<td>2.5.7 Surface Tension</td>
<td>95</td>
</tr>
<tr>
<td>2.5.8 Density</td>
<td>98</td>
</tr>
<tr>
<td>2.5.9 Viscosity</td>
<td>100</td>
</tr>
<tr>
<td>2.5.10 Mass Diffusivity, Electrical Conductivity and Thermal Conductivity</td>
<td>101</td>
</tr>
<tr>
<td>2.5.11 Slag Foaming</td>
<td>102</td>
</tr>
<tr>
<td>2.5.12 Slag Models and Empirical Correlations for Thermodynamic Properties</td>
<td>104</td>
</tr>
<tr>
<td>2.6 Fundamentals of Ironmaking Reactions</td>
<td>104</td>
</tr>
<tr>
<td>2.6.1 Oxygen Potential Diagram</td>
<td>104</td>
</tr>
<tr>
<td>2.6.2 Role of Vapor Species in Blast Furnace Reactions</td>
<td>105</td>
</tr>
<tr>
<td>2.6.3 Slag-Metal Reactions in the Blast Furnace</td>
<td>109</td>
</tr>
<tr>
<td>2.7 Fundamentals of Steelmaking Reactions</td>
<td>118</td>
</tr>
<tr>
<td>2.7.1 Slag-Metal Equilibrium in Steelmaking</td>
<td>119</td>
</tr>
<tr>
<td>2.7.2 State of Reactions in Steelmaking</td>
<td>123</td>
</tr>
<tr>
<td>2.8 Fundamentals of Reactions in Electric Furnace Steelmaking</td>
<td>132</td>
</tr>
<tr>
<td>2.8.1 Slag Chemistry and the Carbon, Manganese, Sulfur and Phosphorus Reactions in the EAF</td>
<td>132</td>
</tr>
<tr>
<td>2.8.2 Control of Residuals in EAF Steelmaking</td>
<td>134</td>
</tr>
<tr>
<td>2.8.3 Nitrogen Control in EAF Steelmaking</td>
<td>135</td>
</tr>
<tr>
<td>2.9 Fundamentals of Stainless Steel Production</td>
<td>136</td>
</tr>
<tr>
<td>2.9.1 Decarburization of Stainless Steel</td>
<td>136</td>
</tr>
<tr>
<td>2.9.2 Nitrogen Control in the AOD</td>
<td>138</td>
</tr>
<tr>
<td>2.9.3 Reduction of Cr from Slag</td>
<td>139</td>
</tr>
<tr>
<td>2.10 Fundamentals of Ladle Metallurgical Reactions</td>
<td>140</td>
</tr>
<tr>
<td>2.10.1 Deoxidation Equilibrium and Kinetics</td>
<td>140</td>
</tr>
<tr>
<td>2.10.2 Ladle Desulfurization</td>
<td>147</td>
</tr>
<tr>
<td>2.10.3 Calcium Treatment of Steel</td>
<td>150</td>
</tr>
<tr>
<td>2.11 Fundamentals of Degassing</td>
<td>151</td>
</tr>
<tr>
<td>2.11.1 Fundamental Thermodynamics</td>
<td>151</td>
</tr>
<tr>
<td>2.11.2 Vacuum Degassing Kinetics</td>
<td>152</td>
</tr>
</tbody>
</table>
Chapter 3 Steel Plant Refractories

3.1 Classification of Refractories
 3.1.1 Magnesia or Magnesia–Lime Group
 3.1.2 Magnesia–Chrome Group
 3.1.3 Siliceous Group
 3.1.4 Clay and High-Alumina Group
 3.1.5 Processed Alumina Group
 3.1.6 Carbon Group

3.2 Preparation of Refractories
 3.2.1 Refractory Forms
 3.2.2 Binder Types
 3.2.3 Processing
 3.2.4 Products

3.3 Chemical and Physical Characteristics of Refractories
and their Relation to Service Conditions
 3.3.1 Chemical Composition
 3.3.2 Density and Porosity
 3.3.3 Refractoriness
 3.3.4 Strength
 3.3.5 Stress-Strain Behavior
 3.3.6 Specific Heat
 3.3.7 Emissivity
 3.3.8 Thermal Expansion
 3.3.9 Thermal Conductivity and Heat Transfer
 3.3.10 Thermal Shock

3.4 Reactions at Elevated Temperatures

3.5 Testing and Selection of Refractories
 3.5.1 Simulated Service Tests
 3.5.2 Post-Mortem Studies
 3.5.3 Thermomechanical Behavior

3.6 General Uses of Refractories
 3.6.1 Linings
 3.6.2 Metal Containment, Control and Protection
 3.6.3 Refractory Use for Energy Savings

3.7 Refractory Consumption, Trends and Costs

Chapter 4 Steelmaking Refractories

4.1 Refractories for Oxygen Steelmaking Furnaces
 4.1.1 Introduction
 4.1.2 Balancing Lining Wear
 4.1.3 Zoned Linings by Brick Type and Thickness
 4.1.4 Refractory Construction
 4.1.5 Furnace Burn-In
 4.1.6 Wear of the Lining
 4.1.7 Lining Life and Costs

4.2 BOF Slag Coating and Slag Splashing
 4.2.1 Introduction
Chapter 6 Steel Plant Fuels and Water Requirements

6.1 Fuels, Combustion and Heat Flow
 6.1.1 Classification of Fuels
 6.1.2 Principles of Combustion
 6.1.3 Heat Flow

6.2 Solid Fuels and Their Utilization
 6.2.1 Coal Resources
 6.2.2 Mining of Coal
 6.2.3 Coal Preparation
 6.2.4 Carbonization of Coal
 6.2.5 Combustion of Solid Fuels

6.3 Liquid Fuels and Their Utilization
 6.3.1 Origin, Composition and Distribution of Petroleum
 6.3.2 Grades of Petroleum Used as Fuels
 6.3.3 Properties and Specifications of Liquid Fuels
 6.3.4 Combustion of Liquid Fuels
 6.3.5 Liquid-Fuel Burners

6.4 Gaseous Fuels and Their Utilization
 6.4.1 Natural Gas
 6.4.2 Manufactured Gases
 6.4.3 Byproduct Gaseous Fuels
 6.4.4 Uses for Various Gaseous Fuels in the Steel Industry
 6.4.5 Combustion of Various Gaseous Fuels

6.5 Fuel Economy
 6.5.1 Recovery of Waste Heat
 6.5.2 Minimizing Radiation Losses
 6.5.3 Combustion Control
 6.5.4 Air Infiltration
 6.5.5 Heating Practice

6.6 Water Requirements for Steelmaking
 6.6.1 General Uses for Water in Steelmaking
 6.6.2 Water-Related Problems
 6.6.3 Water Use by Steelmaking Processes
 6.6.4 Treatment of Effluent Water
 6.6.5 Effluent Limitations
 6.6.6 Boiler Water Treatment

Chapter 7 Pre-Treatment of Hot Metal

7.1 Introduction
7.2 Desiliconization and Dephosphorization Technologies
Chapter 8 Oxygen Steelmaking Furnace Mechanical Description and Maintenance Considerations

8.1 Introduction

8.2 Furnace Description
 8.2.1 Introduction
 8.2.2 Vessel Shape
 8.2.3 Top Cone-to-Barrier Attachment
 8.2.4 Methods of Top Cone Cooling
 8.2.5 Vessel Bottom
 8.2.6 Types of Trunnion Ring Designs
 8.2.7 Methods of Vessel Suspension
 8.2.8 Vessel Imbalance
 8.2.9 Refractory Lining Design
 8.2.10 Design Temperatures
 8.2.11 Design Pressures and Loading
 8.2.12 Method of Predicting Vessel Life
 8.2.13 Special Design and Operating Considerations

8.3 Materials

8.4 Service Inspection, Repair, Alteration and Maintenance
 8.4.1 BOF Inspection
 8.4.2 BOF Repair and Alteration Procedures
 8.4.3 Repair Requirements of Structural Components
 8.4.4 Deskulling

8.5 Oxygen Lance Technology
 8.5.1 Introduction
 8.5.2 Oxidation Reactions
 8.5.3 Supersonic Jet Theory
 8.5.4 Factors Affecting BOF Lance Performance
 8.5.5 Factors Affecting BOF Lance Life
 8.5.6 New Developments in BOF Lances

8.6 Sub-Lance Equipment
10.2.4 Electrical Considerations for AC Furnaces 557
10.2.5 Electrical Considerations for DC Furnaces 560

10.3 Graphite Electrodes 562
10.3.1 Electrode Manufacture 562
10.3.2 Electrode Properties 564
10.3.3 Electrode Wear Mechanisms 564
10.3.4 Current Carrying Capacity 569
10.3.5 Discontinuous Consumption Processes 569
10.3.6 Comparison of AC and DC Electrode Consumption 572
10.3.7 Development of Special DC Electrode Grades 575

10.4 Gas Collection and Cleaning 577
10.4.1 Early Fume Control Methods 577
10.4.2 Modern EAF Fume Control 579
10.4.3 Secondary Emissions Control 583
10.4.4 Gas Cleaning 586
10.4.5 Mechanisms of EAF Dust Formation 590
10.4.6 Future Environmental Concerns 590
10.4.7 Conclusions 594

10.5 Raw Materials 594

10.6 Fluxes and Additives 595

10.7 Electric Furnace Technology 597
10.7.1 Oxygen Use in the EAF 597
10.7.2 Oxy-Fuel Burner Application in the EAF 598
10.7.3 Application of Oxygen Lancing in the EAF 601
10.7.4 Foamy Slag Practice 604
10.7.5 CO Post-Combustion 605
10.7.6 EAF Bottom Stirring 615
10.7.7 Furnace Electrics 617
10.7.8 High Voltage AC Operations 617
10.7.9 DC EAF Operations 618
10.7.10 Use of Alternative Iron Sources in the EAF 621
10.7.11 Conclusions 622

10.8 Furnace Operations 622
10.8.1 EAF Operating Cycle 622
10.8.2 Furnace Charging 623
10.8.3 Melting 624
10.8.4 Refining 624
10.8.5 Deslagging 626
10.8.6 Tapping 627
10.8.7 Furnace Turnaround 627
10.8.8 Furnace Heat Balance 628

10.9 New Scrap Melting Processes 629
10.9.1 Scrap Preheating 629
10.9.2 Preheating With Offgas 630
10.9.3 Natural Gas Scrap Preheating 630
10.9.4 K-ES 631
10.9.5 Danarc Process 634
10.9.6 Fuchs Shaft Furnace 635
10.9.7 Consteel Process 642
10.9.8 Twin Shell Electric Arc Furnace 645
10.9.9 Processes Under Development 648
Chapter 11 Ladle Refining and Vacuum Degassing

11.1 Tapping the Steel
 11.1.1 Reactions Occurring During Tapping
 11.1.2 Furnace Slag Carryover
 11.1.3 Chilling Effect of Ladle Additions

11.2 The Tap Ladle
 11.2.1 Ladle Preheating
 11.2.2 Ladle Free Open Performance
 11.2.3 Stirring in Ladles
 11.2.4 Effect of Stirring on Inclusion Removal

11.3 Reheating of the Bath
 11.3.1 Arc Reheating
 11.3.2 Reheating by Oxygen Injection

11.4 Refining in the Ladle
 11.4.1 Deoxidation
 11.4.2 Desulfurization
 11.4.3 Dephosphorization
 11.4.4 Alloy Additions
 11.4.5 Calcium Treatment and Inclusion Modification

11.5 Vacuum Degassing
 11.5.1 General Process Descriptions
 11.5.2 Vacuum Carbon Deoxidation
 11.5.3 Hydrogen Removal
 11.5.4 Nitrogen Removal

11.6 Description of Selected Processes
 11.6.1 Ladle Furnace
 11.6.2 Tank Degasser
 11.6.3 Vacuum Arc Degasser
 11.6.4 RH Degasser
 11.6.5 CAS-OB Process
 11.6.6 Process Selection and Comparison

Chapter 12 Refining of Stainless Steels

12.1 Introduction

12.2 Special Considerations in Refining Stainless Steels

12.3 Selection of a Process Route

12.4 Raw Materials

12.5 Melting
 12.5.1 Electric Arc Furnace Melting
 12.5.2 Converter Melting

12.6 Dilution Refining Processes
 12.6.1 Argon-Oxygen Decarburization (AOD) Converter Process
 12.6.2 K-BOP and K-OBM-S
 12.6.3 Metal Refining Process (MRP) Converter
 12.6.4 Creusot-Loire-Uddeholm (CLU) Converter
 12.6.5 Krupp Combined Blowing-Stainless (KCB-S) Process
 12.6.6 Argon Secondary Melting (ASM) Converter